Forward-Central Jet Correlations at the Large Hadron Collider

Michal Deák

Instituto de Física Teórica,
Universidad Autonoma de Madrid
in collaboration with Francesco Hautmann,
Hannes Jung, Krzysztof Kutak
(2010) 1012.6037

Contents

- Short introduction and motivation
- High energy factorisation framework
- High energy factorisation vs. multi parton interactions (MPI)
- Energy and jet flows
- Summary and conclusions

Forward jets - motivation

- QCD at small x
 (Mueller, Navelet; Nucl.Phys. B282 (1987) 727)
- New particle discovery physics
- Extensive coverage of large rapidity regions at the LHC experiments ($3<|\eta|<5$ and $-5.2>\eta>-6.6$)
 - Possibility to study two jet correlations

Forward jets - relevant kinematics

Equation for the rapidity of the hard subprocess final state

$$p = (p_0, p_3, p_2, p_1)$$

$$p_A = \left(\frac{\sqrt{s}}{2}, \frac{\sqrt{s}}{2}, 0, 0\right)$$

$$p_B = \left(-\frac{\sqrt{s}}{2}, \frac{\sqrt{s}}{2}, 0, 0\right)$$

$$y = \frac{1}{2} \ln \frac{p_0 + p_3}{p_0 - p_3} = \frac{1}{2} \ln \frac{x_1}{x_2}$$

Forward jets - relevant kinematics

Equation for the rapidity of the hard subprocess final state

$$p = (p_0, p_3, p_2, p_1)$$

$$p_A = \left(\frac{\sqrt{s}}{2}, \frac{\sqrt{s}}{2}, 0, 0\right)$$

$$p_B = \left(-\frac{\sqrt{s}}{2}, \frac{\sqrt{s}}{2}, 0, 0\right)$$

$$y = \frac{1}{2} \ln \frac{p_0 + p_3}{p_0 - p_3} = \frac{1}{2} \ln \frac{x_1}{x_2}$$

• If $x_1 \sim 10^{-5}$ and $x_2 \sim 0.1$ then $y \sim 4.5$ -- very forward!

Simple kinematics + dynamics

- 2 distinct scales s_1 and s_2
- In the cross section of this process will appear logarithms of the form

$$\ln\left(\frac{s_2}{s_1}\right) \sim \ln\left(\frac{x_2}{x_1}\right)^{x_2} \sim \ln\left(\frac{1}{x_1}\right)$$

- Can be resummed by high energy factorisation
 - S. Catani, M. Ciafaloni and F. Hautmann, Phys. Lett. B242 (1990) 97; Nucl. Phys. B366 (1991) 135
- Exclusive states possible with CCFM equation implemented in Monte Carlo Cascade
- Parton showers based on the CCFM equation

Cross section

The dominant processes for forward jet production

$$qg^* \to qg$$
$$gg^* \to gg$$
$$gg^* \to q\bar{q}$$

- One parton off-shell carrying a small x
- Goal is to calculate the cross section

$$rac{d\sigma}{dQ_t^2 darphi} = \sum_a \int \; \phi_{a/A} \; \otimes \; rac{d\widehat{\sigma}}{dQ_t^2 darphi} \; \otimes \; \phi_{g^*/B}$$

M. D., F. Hautmann, H. Jung, K. Kutak, JHEP 09, 121 (2009). 0908.0538

- Off-shell matrix element convoluted with unintegrated parton density functions (uPDFs)
- In Cascade done by generating emissions in a parton shower

Matrix element study

 Some properties of the off-shell matrix elements of the relevant processes studied - decomposed into non-abelian and abelian part

- $qg^* \to qg$
- $gg^* \rightarrow gg$
- $gg^* \to q\bar{q}$

Q_T=transversal energy in terms of final state pt's

- Dependence on transvrsal momentum of the off-shell gluon
- Dynamical cut-off at $k_T \sim Q_T$ set by coherence effects
 - Non-negligible contribution from finite tail
- DGLAP based parton showers do not allow for such a hard emissions in the chain

M. D., F. Hautmann, H. Jung, K. Kutak, JHEP 09, 121 (2009). 0908.0538

CCFM equation

- The CCFM equation
 - Includes BFKL kernel
 - Coherence effects
 - Angular ordering
- The equation

$$\mathcal{F}(x, \mathbf{k}, \mathbf{q'}^2) = \mathcal{F}(x, \mathbf{k}, \mathbf{q'}^2) + \int_{\mathbf{q'}^2}^{\mathbf{q'}^2} \frac{d^2 \bar{\mathbf{q}}'}{\bar{\mathbf{q}}'^2} \frac{N_C \alpha_S}{\pi}$$

$$\int_{x}^{1-\frac{Q_0}{|\mathbf{q'}|}} \frac{dz}{z} \mathcal{F}(x/z, \mathbf{k'}, \bar{\mathbf{q}}^{\prime 2}) \left(\frac{\Delta_{NS}(\mathbf{k'}^2, (z\bar{\mathbf{q}}^{\prime})^2)}{z} + \frac{1}{1-z} \right) \Delta_{S}(\mathbf{q'}_0^2, (z\bar{\mathbf{q}}^{\prime})^2)$$

- M. Ciafaloni, Nucl. Phys. B296, 49 (1988);
- S. Catani, F. Fiorani, and G. Marchesini, Phys. Lett. B234, 339 (1990);
- S. Catani, F. Fiorani, and G. Marchesini, Nucl. Phys. B336, 18 (1990);
- G. Marchesini, Nucl. Phys. B445, 49 (1995)

CASCADE

- Monte Carlo generator Cascade (version 2.2.0, H. Jung et al.; Eur.Phys.J.C70:1237-1249,2010) - implementation of the CCFM equation
 - Backward evolution algorithm for initial state parton showers for
 - Exact kinematics in each step of the parton shower
 - No difference between parton shower evolved uPDF and CCFM evolved uPDF
 - Gluon chains
 - Valence quarks/Non-singlet uPDFs from one-loop CCFM equation
 - Final state parton showers by Pythia algorithm
 - Hadronisation of partons by the Lund String Model
 - Gluon uPDFs obtained from fits to HERA data

Details of the convolution

 The initial state off-shell gluon directly from the CCFM-parton shower-evolved uPDF

$$qg^* \to qg$$
$$gg^* \to gg$$
$$qq^* \to q\bar{q}$$

- On-shell parton obtained from CCFM evolved uPDF
 - Transversal momentum neglected in the matrix element of the hard subprocess, but included in the kinematics of the final state
 - k_{\perp} integrated up to the hard scale given by the angle
 - Quarks evolved by one-loop CCFM: only valence component included

H. Jung et al.; Eur.Phys.J.C70:1237-1249,2010

proton

High energy factorisation and MPI

- 1. MPI effectively generate certain amount of pt-non-ordering of showered partons
- 2. MPI increase the jet multiplicity of the parton showers
- 3. MPI increase the number of hard jets in the process
- pt-unordered parton
 showers (1.) increase jet
 Multiplicity (2.) and number
 of hard jets (3.)
- Natural to compare MPI with pt-unordered parton
 Showers
- Different mechanisms

multiple pt-ordered chains

one pt-unordered chain

Phenomenological results

Parameters and settings

- Hard matrix elements included in Cascade MC generator:
 - gluon uPDFs fitted from HERA data
 - quark CTEQ6.0 PDF evolved by CCFM
- Pythia settings: CTEQ 5L PDFs
 - q² ordering for initial state parton shower, with and without MPI
- Jets on parton level; jet algorithm kt-clus
- Forward jets rapidity: $-3 < \eta < -5$
- Central jets rapidity: $-2 < \eta < 2$
- E₁>10 GeV

Pt spectra of forward jets

- Similar slopes of cross sections
- MPI only shift the jet rapidity cross section by a factor

Pt spectra of central jets

- Different slopes of cross sections
- k_T of incoming gluon allows for harder spectrum CCFM parton showers not ordered in k_T
- MPI enhances cross section at low E_T

Rapidity dependence

- MPI changes the slope of the rapidity spectrum
- Rapidity cross sections agree better when increasing the cut on jet E_{τ}

Phenomenological results

- Select:
 - a central jet $-2 < \eta < -1$
 - and a forward jet $4 < \eta < 5$
- Looking at:
 - particle flow and minijets
 - particle flow and minijets

away from jets

between the jets

Phenomenological results

• Select:

- a central jet $-2 < \eta < -1$

- and a forward jet $4 < \eta < 5$

Looking at:

Minijet and particle energy flow between central and forward jet

- MPI produces more jets with higher transversal energy
- High energy factorisation produces less decorrelation whit a higher cut on E_{τ}

Azimuthal dependence

• flattening dependent on $\Delta\eta$

Forward jets - Summary

- Calculations of gauge invariant matrix elements of relevant processes in Monte Carlo implementation suitable form
- Convolution with the uPDFs in Monte Carlo generator CASCADE
- Study of jet transversal energy and rapidity cross sections of forward jets and a central jet
- Comparison with PYTHIA Monte Carlo generator with multiparton interactions (MPI)
- Difference between the high energy factorisation enhanced jet activity and MPI jet activity

Conclusions

- LHC opens phase space for large center of mass energies and for presence of multiscales
- This brings perturbative corrections which are summed up by high energy factorisation
- An approach which allows for studies of forward jets at the LHC
- Proposal of observables which allow for discrimination between different approaches

CASCADE

 The largest angle = the angle of the hard subprocess final state system

Angular ordering for small angles

$$\frac{|\mathbf{q}_i|}{1 - z_i} > \frac{z_{i-1}|\mathbf{q}_{i-1}|}{1 - z_{i-1}}$$